The exponent set of symmetric primitive (0, 1) matrices with zero trace

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The kth upper generalized exponent set for the class of non-symmetric primitive matrices

Let QBn be the set of n x n (n > 8) non-symmetric primitive matrices with at least one pair of nonzero symmetric entries. For each positive integer 2 ::; k ::; n 2, we give the kth upper generalized exponent set for Q Bn by using a graph theoretical method.

متن کامل

The kth upper generalized exponent set for primitive matrices

Let Pn,d be the set of n x n non-symmetric primitive matrices with exactly d nonzero diagonal entries. For each positive integer 2 ~ k ~ n -1, we determine the kth upper generalized exponent set for Pn,d and characterize the extremal matrices by using a graph theoretical method.

متن کامل

Primitive Zero-Symmetric Sign Pattern Matrices with Zero Diagonal Attaining the Maximum Base

A sign pattern matrix or sign pattern A is a matrix whose entries are from the set {1,−1, 0}. Notice that for a square sign pattern matrixA, in the computation of the signs of the entries of the power A, an ambiguous sign may arise when a positive sign is added to a negative sign. So a new symbol # was introduced in 1 to denote such an ambiguous sign. The powers of a square sign pattern have be...

متن کامل

Power Indices of Trace Zero Symmetric Boolean Matrices

The power index of a square Boolean matrix A is the least integer d such that A is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n × n primitive symmetric Boolean matrices of trace zero, the class of n × n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zer...

متن کامل

On Approximation Problems With Zero-Trace Matrices

12 because the conditions formulated in Corollary 1 are satissed for the problem (??). Therefore we have for every z 2 C jjjI + zBjjj k jjjIjjj k : Hence for every unitarily invariant norm we have by the properties of the unitarily invariant norms jjI + zBjj jjIjj: This completes the proof. 2 The above considerations imply that the characterization of a zero-trace matrix by means of the problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90244-7